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SUMMARY

Suppose that we have a certain number of machines, not
all of the same capability, with which to do a certain number
of tasks, not all of the same difficulty. On the assumption
that it 1is better to use 2 more capable machine for a more
difficult task, an algorithm is given for the most efficient
assignment of machines to tasks. It is shown that the

“algorithm solves an equivalent linear programming problem.
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A FEASIBILITY ALGORITHM POR ONE-WAY S''BSTITUTION IN
PROCESS ANALYSIS®

1. INTRODUCTION '

We suppose, as is done in some simple forms of process
analysis (see Refs. 1 and 2), that we have a certain number
of machines of m different types with which to do a certain
number of tasks of n different types. Each machine 1s capable
of performing tasks of one or more types, and conversely each
task can be done by machines of one or more types. We further
assume that the machines can be numbered in decreasing order
of capabllity, so that any machine can perform any task that
can be performed by a later machine; similarly, it 1is assumed
that the tasks can be numbered in decreasing order of difficulty,
so that, if & given task can be performed by a given machine,
all later tasks can be performed by that machine. Pinally, we
assume that, in a certain sense, it 1s more efficlent to do a
task by a machine that is as close as possible to being the
first machine in the series. That is, if task 1 is more
difficult than task 2, then it is better to use a more capable
machine to do task 1 (if the machine 1s capable of performing
task 1) and use a less capable machine to do task 2.

Suppose we are <iven a certain amount of work of each

type to do and a certain quantity of machines of each type.

-
We are indebted to Harry Markowitz for cooperation in
conjecturing the alpgorithm discussed here.



P94 1
9—12-57
D,

We wish to test whether or not the given task progren 1is

feasible.

2. THE ALOORITHM

The following algorithm is proposed: PFirst, use the
most capable machine for the most difficult task. If “he
whole desired quantity of the task can be done by the avallable
quantity of this machine, apply the left—over amount of the
most capable machine to the next most difficult task. Continue
until the stock of machines of the most capnblo.type is
exhausted and then continue with machines of the second most
capable type. This process is continued either until all the
machine stocks capable of performing a certain task have been
exhausted and some of thie task remains, in which case the
task program is infeasible, or until all the tasks have bLeen
assigned without using more of any machine than is avallable,
in which case the prozram is feasible.

The second statement 1s obvious; the difficult point is
to prove the criterion for infeasibility, since it might seem
at first gzlance that other assignments of machines to tasks
than the one considerwd might show a program to be feasible
when the method of assigning the most difficult tasks to the
most capable machines would not indicate this. In fact — as
we shall see — under the assumptions made, this possibility
cannot arise. Moreover,.the algorithm will be shown to solve

an equivalent linear programming problem.

B, ]
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2. MATHEMATICAL PORMULATION

Let a be the amount of tasx J performed by a unit input

1J
of machine 1. The ordering of machines and tasks by capability

and difficulty, respectively, can be expressed as follows:

s >0 and 1' { 1, then 8444 ) 0;

(2) if a,, > O and J' > J, then a4, > 0.

1

.He are further assuming that 1f 1 { {' and J { §', and f
machine 1' is capable of handling task J at all, then it is
better to devote machine i to taek J and use the amount of
released stock of machine 1' for task J'. That is, the output
of task J' for a wnit input of machine i is less than the
output achievable by devoting the unit of machine 1 to task J
and applying the amount of machine 1' that would havé been
needed to perform the same amount of task J to the performance
of task J'. By definition, it requires aij/ai'J units of
machine i' to perform the same amount of task J as one unit

of machine {; hence, the assumption can be expressed as follows:

(3) ir1{4, 3<J, and a;,, >0, then

a,,, <(a  /a,, j)a,,,,; that is, (a,,,/a ) < (a,,,,/8,,4),

since by (1) the inequality 2, ) 0 implies a, ) 0.
Let
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M, = the number of units of the i-th type machine
2 = 2, 8 ives W);

T, = the number of units of the Jj—th type task to be
performed (J = 1, 2, ..., n),

x = the gumber of units of the i—th type machine
assigned to the J-th type task,

ir - (iiJ)r = the set of ‘13.' defined according to
the algorithm described in the introduction when

applied to the first r tasks.

Thus
- 71>
X = min (K —
11 ( g .11

Ir X,, = M,, then ilj =0 for J >1, and

- a,;"
X3 = min (ﬁz' i Bl ) .

T
- 1 o
1 Xy, " ;;I , then ‘13 =0 for 1 > 1, and
? B
- 1
x .Mn._—,_._),
12 < 1 a,, a,,
and so on.

4. THEOREM AND PROOP

We shall establish the following result.

Theorem. If any allocation procedure satisfies a given

program of machines and tasks, then the algorithm does also,
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and in addition it maximizes the amount of work done on the

last task type while meeting the other task requirements.

We present a proof by induction.

Let Pr be the set of x, .'s satisfying the conditions

1
(4) X, 2 9,
n
(5) J§1x13 < My (L =2, ..., m),
m
(6) EROTRAY (3 = 14 oes P)s

We are seeking to prove that if Pn is nonnull, then 1t
contains ih‘

et Pr+1 be the linear prosramming problem of maximizing

m -
7 -z A X
(7) =1 1,r+l171,r+l
among, the elements of Pr — that 18, maximizing the work done

orrf the (r 41)-st type task while satisfying the requirements
on the tasks of the first r types. We want to prove Lhe

following two statements:
(8) if xr telongs to F_, then X,  , solves Pr+l;

Q 1 Y Tvu 4
(9) if xrrl solves Pr“' then 1. belongs to Pr+]'

-

The two statements together imply that ir+l belongs to pr«l

.

J

o
P~
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1$'i; belongs to ’r' Now ib clearly belongs to Po; hence
induction establishes the result that X belongs to P for
2ll r { n, and therefore X belongs to P .

The proof of (9) is cbvious. Since F, is nonnull, there

s a set of x, 's belonging to P, for which (7) takes on a

1)
value at least as great as T _ . (since an element of P, belongs
to P, for all r). Prom (8), then, (7) must take on at least

as great a value when IP+1 is substituted for the xiJ's‘ Hence

X , belongs to P

r+ r+l’

To prove (8), we assume that i; is in F_. Construct ir+1
from ir by diverting any possible excess qnchxnc time from the
r—th type task to the (r+ 1)—st type task aceording to the
algorithm. It is easy to see that the set ir+1 forms a basis
for the linear programming problem Pr+1' By construction there
are m+r basic variables ) O that form a "path" of steps to the
right and downward through the (m by r+ 1) matrix of (xu) in

’r+1
TJ are exhausted simultaneously, we choose X

starting at ill and ending at im.r+1' (If an "1 and a
141, = 0 for the
basis.)

Let Py and qJ be the dual variables associated with the
inequalities (5) and (6), respectively. Then the duality

conditidh. require that
(10) ‘13%'91 $° (=1, ..., m; §=1, ..., r),

(11) 8. ra1-P £O (t =1, ..., m).



Inequalities {10) and (11) can be combined in the form

(12) aUqJ -Pl go (1'1: ceey WM} Jml, ...p 1), qr+l"1’

We define the qJ's and pi's by requiring equality for the

basic variables in (12); 1.e., we require

(13) 8,49, -~ Py = 0 for i, J corresponding to Xy 4 > 0.

We shall show that (12) holds also for every nonbasic variable

such as x , Bay; l.e., we shéll show that

190

Py /a4
(14) 22 51,
Yo' Jo

Now x can be expressed in terwms of a subset of the

todo
basic variables, say X,

. X g X PRI ’
190" T11dy" T T1dp 1odk
where this set combined with x

' i‘
3 forma the corners of a

0“0

closed loop in the (xij) matrix.

1

To simplify the notation, let

(u, v) = a
1,0J,

Then from (13) we have

(u, u-1) = Piu/“* ,

Yu—1

(U, U) = Pl /q" »
u u

(0, k) =P, Q, .
1o Jx
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Therefore, we have

(v, u=-1)/(u, u) = un/un_l

Hence, the ratio 1in (13) can be written as

/q
o 1o

Py 0 %) K
& i 2 ‘ u, u—1

!Uo U, » ;U; u, u

- ‘ul u—l) LS ‘u, 0‘
uﬁ; Wy \;!L -
1

‘O, k; {k, O; K= u+l, u)(u, 0

[\‘o ] [ u u+ ]21'

since by (3) the value of each heavy bracket group is ) 1.

Thus, (12) is verified for every x and ir+1 is an

13’
optimal linear programming solution to P .. That 1is, (3) holds

for each r, and the theorem is proved.
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